
in the opposite direction (A~ > 0), and the rotation velocity reaches a maximum at ~ = ~+~ 
defined by Eq. (3.2) with the plus sign. It is obvious that similar principles will hold 
with variation of ~2 and fixed o~. 
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PROPAGATION OF A CLEARING WAVE IN AN INHOMOGENEOUS COMBUSTIBLE AEROSOL 

No P. Bashkirova and A. M. Sagalakov UDC 551o573 

The propagation of intense optical radiation in an aerosol is accompanied by clearing 
which develops due to the vaporization or (and) combustion of the aerosol particles. Induced 
clearing in fogs and clouds developing due to the vaporization of water drops in a powerful 
optical field has been the most fully studied up to now [1-4]. A decrease in the size of 
water particles leads to weakening of absorption, as a result of which clearing of the aerosol 
occurs. Peculiarities of the dynamics of clearing are due to the fact that the rate of parti- 
cle combustion is not a unique function of the radiation intensity~ The rate of particle 
combustion at a given time depends on the radiation intensity at previous times and, of course, 
depends on the character and type of chemical reactions taking place in the process of com- 
bustion. The dynamics of clearing in an inhomogeneous, monodisperse, combustible aerosol is 
analyzed in t1~e present report. 

I. It is known that the rate of heterogeneous combustion K S of a solid particle at a 
temperature T below the ignition temperature To can be taken as equal to zero (To ~ 1500~ for 
carbon particies with a size of i-i0 ~m). At T > To the quantity K S is different from zero 
and, generally speaking, depends on T. If the radiation intensity is relatively low, then 
after ignition of a particle the heat released as a result of the chemical reaction of com- 
bustion will make the main positive contribution to its heat balance. Therefore, after the 
ignition of a particle the combustion rate can be considered as practically independent of 
the radiation intensity~ In this case radiation plays the role of the initiator of combustion| 

An elementary estimate of the time of heating a carbon particle with a characteristic 
size of ~i ~m to the ignition temperature determines a value of ~i0 -5 sec. This time is much 
less than the other characteristic times of the given problem (for example, the characteristic 
time of burnup of a particle of the same size is ~i0 -3 sec). Therefore, one can assume that 
a particle ignites practically instantly when a certain radiation intensity Io is reached at 
the given point. From the heat-balance equation we get the estimate 

Barnaul. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
76-83~ July-A~ust, 1981. Original article submitted June 9, 1980. 

0021-8944/81/2204-0505507.50 �9 1982 Plenum Publishing Corporation 505 



Io = ( 4 ~ l a 0 ~ ) ( r 0 -  r~),  

where  T~ i s  t h e  t e m p e r a t u r e  o f  t h e  a m b i e n t  medium; p i s  t h e  c o e f f i c i e n t  o f  t h e r m a l  c o n d u c t i v -  
i t y ;  ao i s  t he  r a d i u s  o f  t h e  s p h e r i c a l  p a r t i c l e ;  k a i s  t h e  c o e f f i c i e n t  o f  a b s o r p t i o n .  T ak in g  
t h e  a e r o s o l  c o n c e n t r a t i o n  as  r e l a t i v e l y  low,  we w i l l  assume t h a t  s e p a r a t e  p a r t i c l e s  b u r n  
independently of each other without significantly changing the temperature of the ambient 
medium. Finally, we will neglect the motion of particles under the action of light pressure 
and wind, considering the simplest static model of the aerosol. 

The square of the radius of particles burning in a diffusional mode decreases by the 
linear law 

where t is the time of burning of the particle; to is the time of complete burnup of the 
particle. We note that this dependence describes well only the initial stage of particle 
combustion. The law of combustion of very fine particles is more complex, but as a certain 
approximation we will take Eq. (i.!) as valid in all stages of combustion. We need the model 
dependence (i.i) to illustrate the general relations obtained below. 

Let the half-space z > 0 be filled with fuel particles for which the combustion law is 
given by a known function a2(t). The distribution of radiation intensity is determined by 
the Bouguer law 

Of /Oz  -t- a f  ---- O. ( 1 . 2 )  

The volumetric coefficient of attenuation a is found from the well-known equation 

cz = na2ko N ,  ( 1 . 3 )  

where ko is a dimensionless attenuation efficiency factor; N is the particle concentration. 
At large values of the Mie parameter p = 2~a/% (% is the radiation wavelength) the quantity 
ko is practically constant and approximately equal to two [5]. For carbon particles this 
condition is well satisfied at O > 15. Even at p = 6 graphite and anthracite particles have 
ko = 2.25 [6]. Thus, the dynamics of the clearing of a system of large particles is deter- 
mined mainly by the function a2(t). The concentration of the inhomogeneous aerosol will be 
written in the form 

N = non(z ) ,  n(O) = !, ( 1 . 4 )  

where no represents the aerosol concentration at z = 0 while the dimensionless function n(z) 
determines the character of inhomogeneity of the aerosol. Using (1.4), we rewrite Eq. (1.3) 
in the form 

o: = gn ( z ) ,  g = ~a~kono �9 

For a homogeneous aerosol the quantity g coincides with the volumetric coefficient of 
attenuation. 

We define the front of the clearing wave as the boundaryseparating burning particles 
from nonburning ones. Let the point zo coincide with the front of the clearing wave at the 
time t. Then l(zo) = Io. From Eq. (1.2) we find 

z 0 
II !' 

In To g (z) n (z) dz. (1.5) 

Here 11 is the initial intensity of the optical radiation. Each point z ~ [0, zo] is set in 
correspondence with the time T at which the clearing wave arrives at this point. Such a 
correspondence defines the function z(T), which is unique at T > 0. The function z(T) de- 
termines the position of the front of the clearing wave, while the derivative of this function, 
v = dz/dT, obviously represents the velocity of the clearing wave. 
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We replace the integration variable z in Eq~ (1.5) by the variable T~ after which we 
have 

t 

I . 'T"  dz d lnlIo =--_I g ( t - - ~ ) n ( z  k ))-s x. (1.6) 
0 

Here the time of combustion of a particle at the point with the coordinate z is given as the 
argument of the function g. 

Equation (1.6) is a nonlinear integrodifferential equation for determining the function 
z(t). The layer of aerosol which corresponds to the intensity distribution from !I to Io 
ignites instantly if we neglect the smmll time of particle heating to the ignition temperature 
and take the speed of light as infinite. The thickness z, of such a layer is determined from 
the equation 

Z$ 

t In I~ [ go To = ~ n (z) dz ,  go = ~o*kon~. < l .  7)  
0 

The singular velocity component of the clearing wave is obviously expressed through the 
equation 

v = z,5 (t), 

where 8(t) is; a 8 function. Having isolated the singular part of the solution~ we obtain the 
following nonlinear integrodifferentia! equation: 

The function z:(t) 
relation 

t 

dz  1 

o 

( 1 , 8 )  

determined from Eq. (1.8) is connected with the function z(t) by the simple 

2. To solve Eq. 

The function f(t) 

z~ (t) = z (t) - z , ,  z~ (0) = 0 .  

(1 .8)  we i n t r o d u c e  the  a u x i l i a r y  f u n c t i o n  

/ (t) = n ( z ,  + z 1 (t)) dzl /dt .  

satisfies the relatively simple integral equation 

t 

l n T -  ~ 1 - -  = g ( t - - ~ ) / ( ' c ) d ~ : .  
go ] 

o 

(2ol) 

(2 .2)  

Since the convolution of the functions f and g is written on the right side of (2.2), it is 
convenient to solve this equation by the method of a Laplace transform using the Borel multi- 
plication theorem. 

The function f(t) is defined as the inverse transform of the well-known transform 

I 1 

go )" (2~ 

Here G(p) is the transform of the function g(t). 

The inversion of the Laplace transform again consists in the solution of an integral 
equation of the first kind, but this is already a standard problem of operational calculus 
[7]. We will henceforth assume that the problem of inverting the Laplace transform is solved 
and the function f(t) has been found. 
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Now the determination of the function z~(t) comes down to the solution of the ordinary 
nonlinear differential equation (2.1). Separating the variables in this equation, we obtain 

z I t 

n ( z ,  + x ) d x =  S f ( t )d t .  
j o 

(2.4) 

The function z~(t) is determined from Eq. (2.4). By differentiating this function, we obtain 
the velocity of the clearing wave. The quantity dz~/dt can be obtained from Eq. (2.1): 

dzl/dt = I (t)/n (z ,  + z 1 (t)). (2.5) 

In the general case the function z1(t) is found numerically. In the examples presented below 
an analytical solution can be obtained. 

At t ~ to the function g(t) is reduced to zero, while the integral equation (2.2) takes 
the form 

t 
11 

t - - to  

g ( t - -  T)] (~) d~ ( 2 . 6 )  

The solution of Eq. (2.6) is obvious: 

0 --~" 

11 
In I-'o 

tO 

j' g (~o - ~) ds 
0 

(2.7) 

Using (2.7), from Eq. (2.5) we find the velocity of the clearing wave as a function of 
the z coordinate at t > to: 

]1 

lnl~ z > z ,  -]- z 1 (to). ( 2 . 8 )  dz 1 

d--F = t o 

n (z) J g ( t  o - -  s) ds 
0 

This equation allows us to determine the position of the front of the clearing wave at t > to. 
We have 

z I 

I 1 t - -  t o 
n (z, + x) d x =  ln lo to 

Zl(tO) ii g (to - -  8) d8 

0 

(2.9) 

Having determined the function z1(t) from this and substituted it into (2.9), we find the 
quantity dzl/dt as a function of time at t > to. 

At the time t = to the velocity of the clearing wave undergoes a jump of the first kind, 
generally speaking. The velocity jump is due to the violation of the analytical nature of the 
function g(t) at t = to. We designate the velocity V(to -- O) as v_ and the velocity v(to + 
0) as v+. In accordance with Eqs. (2.1) and (2~ the relative size of the velocity jump is 
expressed through the equation 

f0 

v_ = f(to___~)[g(to__s) ds. 
w+ l n ~  .J (2.10) 

We note that if the quantity z, or the quantity z1(t) goes to = at t~to, then the 
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need for these solutions at t > to naturally drops out. 

Let the function n(z) be integrable over a finite interval. 

comes infinite if 

Then the quantity z, be- 

1 ]n I1 
~-7 77 >~ ~ (~) d~. 

0 
( 2 . 1 1 )  

The quantity z, is finite if the function n(z) is not integrable over a finite interval. 

3. We take the model equation (i.i) as the combustion law. In this case the function 

g(t) has the form 

g(t) : go(l -- t/to) , t ~ to, g(t)  = O, t ~  t o . ( 3 . 1 )  

The simple equations (2.8), (2.9) can be used at t > to, so that the main task consists in the 
search for a solution at t < to. For this purpose we analytically extend the function g(t) 
into the region of t > to and in place of (3.1) we define the function 

g(t)  = go(i - -  t/to), 0 ~ t < oo. (3.2) 

The solution, obtained by the method of a Laplace transform using the function (3.2), will 

obviously be valid at t < to. 

The transform of the function (3.2) has the simple look 

G(p) := (go/p)( i  --I/top), ( 3 . 3 )  

Substituting (3.3) into Eq. (2.3), we obtain 

/(t) = 
go t o 

- - l n (  1 e t/~o. (3.4) 

Using E q s .  (2.4) and (3.4), we find 

=i 

f' '* (~* + ~) dx :-- ! h~ ~' (r -- 1) 
go TO 0 

(3.5) 

By substituting f(to) and g(to -- s) into Eq. (2.10) we can ascertain that the relative size 
of the velocity jump at t = to is small and equal to e/2. Of course, this result has meaning 
if the velocity of the clearing wave is finite at 0 < t ~to. 

Let the quantity n vary by the linear law 

n(z) = t § (t/k) z, l; > 0. (3.6) 

Substituting (3.6) into Eq. (3.5), we find 

= r ! ~ (~'J'o_ 1)1, 

At t > to we obtain 

[ zl  (t) --  k - -  V i -~ -f'z ~- ~ 
I 

F ') 2(+ )j ( t ~  - ' -  '~ + -  ~ -  - -  t 
I~ --2-. ' " : Z  " 

From this we determine the velocity of the clearing wave: 
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V 1 t et"to, t o > t > O ,  ~,-- 
et/to F.+ 

t >  t o. 

] / z  + e --  2-~ 2 (t/to) (3.7) 

In Eq. (3.7) the velocity is given in the dimensionless form 

o / V  2~,, ln-~-. 

This dependence is presented in Fig. i. Curves 1-3 correspond to the values ~ = 0.2, i, and 
3, respectively. 

The aerosol becomes homogeneous as k § ~. In this case 

__tin 11 [ I At/ta~ 2 In 11 t > t o. (t) = go "~o ~ 5 ( t ) + T o  ~ )' t < t  o , v ( t ) =  got ~ i o ,  

Let us consider another example: 

n(z) = e - z / v .  (3.8) 

This dependence corresponds to a Boltzmann distribution of the aerosol particles. Since the 
function (3.8) is integrable over an infinite interval, the quantity z, can become infinite 
in certain cases. In these cases the clearing of the medium is radically improved and, within 
the framework of the model adopted here, is determined only by the time of particle burnup. 

Substituting (3.8) into Eq. (1.7) and using (2.11), we find that the quantity z, is 
infinite with the condition 

I I 
t ln.~.o ~> t. 

If the dimensionless parameter Q is less than one, then at the initial time a combustible 
layer is formed with a finite thickness z, =-~yln (i -- $). We determine the position of the 
front of the clearing wave and its velocity by using (3.5) and (3.8). For 0 < Q < i/e we 

have 

t - -O 
z l = Y  In Oet/to , O<t~<to;  (3.9) 1 -  

Oet/to 
" v = v l ( ~ / t ~  t - - O e  t / t ~  0 < t < t ~  (3.10) 

V-- 
t 

D---- 
t o 

D =  t- -  Oe~20 20 , t o < t ~ D t  o. (3.11) 
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If i/e < ~ < i, then Eqs. (3.9) and (3.10) are valid up to the time t = to in (~-i) < to. At 
this time the length of the clearing chsnnel becomes infinite (Eqo (3.11) is not used for 
i/e < ~ < !). In Fig. 2 we present the dependence of ~ on time expressed in units of to. 

Curves 1-3 correspond to ~ = 0.25, 0.2, and 0.i~ respectively. 

4. Let us discuss the results obtained and the region of their applicability. If the 

aerosol concentration declines rapidly enough that !n(z)dz converges, then with an increase 
0 

in the radiation intensity a radical clearing of the medium can be achieved through the for- 
mation of a clearing channel of infinite length at the initial time. In this case the clear- 
ing time practically coincides with the time of particle burnup. Allowance for vaporization, 
essential at high intensities, can only decrease this estimate. If the velocity of the 
clearing waw~ is finite at t > 0, the time of complete clearing of the aerosol layer is equal 
to the sum of the time of passage of the clearing wave through this layer and the time of 

burnup of a particle. 

We note that for typical aerosol parameters (a ~ 10 -6 m, ko = 2, to ~ 10 -3 sec, no ~ I0 I~ 
m -3) the characteristic initial velocity of the wave of clearing of an aerosol with a slowly 
varying concentration is ~i0 ~ m/sec when the quantity in (I:/io) is on the order of several 
units. Hence, the time of propagation of the clearing wave must be allowed for in this case 
even for aerosol layers with a thickness on the order of or greater than i0 m. 

In the present report we have considered the simplest static model of an aerosol. If the 
cross section of the clearing channel is small, then in the general case allowance for the 
wind can significantly alter the pattern of clearing even in the central part of the channel. 
If the transverse component of the particle velocity is small (usually less than or on the 
order of 1 m/sec), however, then the pattern of clearing should be altered significantly in 
the central part of the channel. 

Let us estimate the region of applicability of the model combustion law (i| to the 
problem of aerosol clearing. Using a general expression for the combustion rate [8], one can 
show that for carbon particles with a radius of ~8"i0 -6 m heated to a temperature of ~3000~ 
the diffusional mode of combustion is retained as the particle radius decreases by about an 
order of magnitude. In such a range of variation of the particle radius the value of ko ca~1 
be taken as approximately constant and equal to two if the radiation wavelength is ~i0 -6 m. 

We can show that the dynamics of the remaining part of a particle hardly affects the dynamics 
of clearing over a considerable time interval. Let us assume, for example, that a particle 
"remnant" does not burn up at all, and determine how this would affect the dynamics of clear- 
ing. In the simplest case of n(z) = 1 at t > to we obtain an approximate expression for the 
velocity of the clearing wave, 

v(t)~ 2 ln/~exp.[--2 a~ (t--t~ i got'---~ go to , ~o << go, 

where so is the volumetric coefficient of attenuation of the particle "remnants." The ex- 
ponential factor characterizes the difference between the clearing modes being compared. The 
two modes will be close to each other if the exponential factor is close to one. This will 
occur with tile condition t <<goto/2~o. If the radii of a particle and a "remnant" are in a 
ratio of i0 to i, then this condition takes the form t <<50to. 

Thus, if the diffusional mode of combustion corresponds to a considerable change in the 
radius of a particle, then using Eq| (i.i) one can satisfactorily describe the dynamics of 
clearing over a considerable time interval. Estimates of the radiation intensities at which 
the combustion process prevails over the vaporization process are given in [9]. 

In the case of a polydisperse aerosol the front of the clearing wave will be smeared out, 
since particles of different sizes ignite at different intensities of radiation incident on 
them. 

In other words, a traveling region of finite width separating the burning from the non- 
burning particles will exist in the aerosol. Within the limits of this region there are both 
burning and nonburning particles. The position of such a region and the velocity of its 
movement can be estimated on the basis of the results presented above, taking a characteristic 
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average radius as the particle size. Such an estimate will obviously be the more precise, 

the narrower the range of particle sizes. 

The authors thank V. N. Shtern, V. I. Bukatyi, A. M. Shaiduk, and A. A. Tel'nikhin for 
useful discussions. 
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PERTURBATION PROPAGATION IN NONLINEAR TRANSPORT PROCESSES 

DESCRIBED BY A TURBULENT FILTRATION EQUATION 

K. B. Pavlov, A. S. Romanov, 
and I. A. Fedotov 

UDC 532.516 

A parabolic quasilinear equation of the form 

Oft c~ (] ~uh In--10tt~ O, f r  k n > t  (1) 
at az \! T oz ] ---- 

describes different transport processes in the case of a power-law dependence of the transport 
coefficients on the transportable quantity u and its gradient ~u/~x. In particular, for n = i 
Eq. (i) can be considered as a nonlinear heat conduction equation, for k = i as the momentum 
transport in a non-Newtonian dilatant fluid, and in the general case of k, n # i, as a turbu- 
lent filtration equation [1-3]. The essential feature of the transport processes described 
by (i) is the presence of the line x = xf(t) delimiting the domain with u(x, t) = 0 and the 
domain of localization of perturbations with u(x, t) > 0 [4]. Regularities of the motion of 
the front x = xf(t) in the Cauchy problem for (I) are investigated in this paper. 

We shall consider an initial distribution of the transportable quantity described by the 
bounded finite function 

0 for I x l < l x ~ l ,  
~~ for ixl>Ix, I, 

that is symmetric with respect to x to be given at the initial time t = 0, and assume that the 
asymptotic representation of the function uo(x) as x + xr + 0, xr < 0 has the form 

Uo(X) N U o ( x - -  xr ~, ~ ~ 0 .  (2) 

Then t h e  law of  f r o n t  mot ion  xf  = x f ( t )  shou ld  be found from t h e  s o l u t i o n  of  t he  Cauchy 
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